首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   2篇
  国内免费   6篇
安全科学   1篇
废物处理   5篇
环保管理   11篇
综合类   19篇
基础理论   27篇
污染及防治   40篇
评价与监测   19篇
社会与环境   7篇
  2023年   1篇
  2022年   8篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   13篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   8篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有129条查询结果,搜索用时 250 毫秒
21.
An experiment has been conducted under laboratory conditions to investigate the effect of phorate (an organophosphate insecticide) and carbofuran (a carbamate insecticide) at their recommended field rates (1.5 and 1.0 kga.i.ha-1, respectively) on the growth and multiplication of microorganisms as well as rate of dissipation and persistence of the insecticidal residues including their metabolites in laterite (typic orchaqualf) and alluvial (typic fluvaquent) soils of West Bengal. Application of phorate and carbofuran in general, induced growth and development of bacteria, actinomycetes, fungi, N2-fixing bacteria and phosphate solubilizing microorganisms in both the soils and the stimulation was more pronounced with phorate as compared to carbofuran. Application of phorate recorded highest stimulation of fungi in laterite and actinomycetes in alluvial soil. Carbofuran on the other hand, augmented fungi and N2-fixing bacteria in laterite and actinomycetes in alluvial soil. Bacterial population was inhibited due to the application of carbofuran in alluvial soil. Phorate sulfoxide and phorate sulfone, the two metabolites of phorate and 3-hydroxycarbofuran and 3-ketocarbofuran, the two metabolites of carbofuran isolated were less persistent in both the soils. Phorate persisted in laterite and alluvial soils up to 45 and 60 days, respectively depicting the half-life (T1/2) 9.7 and 11.5 days, respectively while the T1/2 of carbofuran for the said soils were 16.9 and 8.8 days, respectively. No metabolite of carbofuran was detected in soils after 30 days of incubation while phorate sulfone persisted in alluvial soil even after 60 days of application of the insecticide.  相似文献   
22.
• In situ preparation of FeNi nanoparticles on the sand via green synthesis approach. • Removal of tetracycline using GS-FeNi in batch and column study. • Both reductive degradation and sorption played crucial role the process. • Reusability of GS-FeNi showed about 77.39±4.3% removal on 4th cycle. • TC by-products after interaction showed less toxic as compared with TC. In this study, FeNi nanoparticles were green synthesized using Punica granatum (pomegranate) peel extract, and these nanoparticles were also formed in situ over quartz sand (GS-FeNi) for removal of tetracycline (TC). Under the optimized operating conditions, (GS-FeNi concentration: 1.5% w/v; concentration of TC: 20 mg/L; interaction period: 180 min), 99±0.2% TC removal was achieved in the batch reactor. The removal capacity was 181±1 mg/g. A detailed characterization of the sorbent and the solution before and after the interaction revealed that the removal mechanism(s) involved both the sorption and degradation of TC. The reusability of reactant was assessed for four cycles of operation, and 77±4% of TC removal was obtained in the cycle. To judge the environmental sustainability of the process, residual toxicity assay of the interacted TC solution was performed with indicator bacteria (Bacillus and Pseudomonas) and algae (Chlorella sp.), which confirmed a substantial decrease in the toxicity. The continuous column studies were undertaken in the packed bed reactors using GS-FeNi. Employing the optimized conditions, quite high removal efficiency (978±5 mg/g) was obtained in the columns. The application of GS-FeNi for antibiotic removal was further evaluated in lake water, tap water, and ground water spiked with TC, and the removal capacity achieved was found to be 781±5, 712±5, and 687±3 mg/g, respectively. This work can pave the way for treatment of antibiotics and other pollutants in the reactors using novel green composites prepared from fruit wastes.  相似文献   
23.
24.
Morris DW  Mukherjee S 《Ecology》2007,88(3):597-604
Carrying capacity is one of the most important, yet least understood and rarely estimated, parameters in population management and modeling. A simple behavioral metric of carrying capacity would advance theory, conservation, and management of biological populations. Such a metric should be possible because behavior is finely attuned to variation in environment including population density. We connect optimal foraging theory with population dynamics and life history to develop a simple model that predicts this sort of adaptive density-dependent change in food consumption. We then confirm the model's unexpected and manifold predictions with field experiments. The theory predicts reproductive thresholds that alter the marginal value of energy as well as the value of time. Both effects cause a pronounced discontinuity in quitting-harvest rate that we revealed with foraging experiments. Red-backed voles maintained across a range of high densities foraged at a lower density-dependent rate than the same animals exposed to low-density treatments. The change in harvest rate is diagnostic of populations that exceed their carrying capacity. Ecologists, conservation biologists, and wildlife managers may thus be able to use simple and efficient foraging experiments to estimate carrying capacity and habitat quality.  相似文献   
25.
26.
27.
Varied concentrations of PbCl2 and CdCl2 in the germinating media reduced the total chlorophyll and carotenoid contents in primary leaves of Amaranthus lividus seedlings (168 h old). When chlorophyll a and chlorophyll b contents were measured separately, greater loss of chl b than chl a under the identical conditions of heavy metal treatment was observed In addition, the loss of total chlorophyll was more than carotenoids under the same magnitude of heavy metal treatment. The effect of heavy metal treatment at germination stage was further studied on chlorophyll accumulation in primary leaves in relation to the activities of 5-aminolevulinic acid dehydratase (ALAD) and chlorophyllase. The activities of ALAD gradually diminished in response to both the heavy metals in a concentration-guided manner, while the activities of chlorophyllase did not exhibit any significant change.  相似文献   
28.
Light microscopic and ultra-structural studies of the lymphoid tissues such as blood immunocytes, spleen and pronephros of the freshwater catfish, Clarias batrachus, were carried out. The peripheral blood showed nucleated erythrocytes, total leucocytic count (TLC) more than that observed in mammalian blood and leucocytes with morphological appearance similar to the mammalian white blood cells (WBCs). The spleen and pronephros showed presence of numerous lymphocytes, monocytes and nucleated red blood cells (RBCs) along with hemosiderin-containing macrophages. The morphology of lymphoid organs of the catfish has been discussed in light of the evolution of the immune system in this class of vertebrates.  相似文献   
29.
In this work the effect of organic reducing reagents, namely, ascorbic acid, oxalic acid and L-cysteine on dissolution of commercial TiO(2) has been investigated. Kinetic studies showed that a maximum of about 45% of TiO(2) was dissolved by ascorbic acid in 4h when oxide:acid molar ratio was kept at 1:2. The dissolution of TiO(2) increased with increase in ascorbic acid and oxalic acid concentration up to 0.15M in 4h (corresponding to molar ratio of oxide to acid of 1:3) and further addition did not affect the dissolution. Nearly 45% TiO(2) dissolution was obtained with ascorbic acid alone while oxalic acid yielded 40% dissolution. When oxalic acid was added along with ascorbic acid in equi-molar concentrations, dissolution of TiO(2) was enhanced to 60% in 2.5h but when cysteine was added to ascorbic acid the dissolution was about 50% in just 1h.  相似文献   
30.
One of the most practical approaches for establishing a successful microbial fuel cell (MFC) is to fasten the oxidation rate of the substrate by the microorganisms to get quick paced electron transfer between microbes and electrode. A genetically modified Escherichiacoli, overexpressing α-amylase, is constructed and applied as biocatalyst in MFC using starch as substrate. The results are compared with nonrecombinant, native E.coli. The results show better performance for the MFC containing the recombinant strain demonstrated by higher power density (PD), lower resistance, and significant electrochemical activity. Maximum PD has been recorded as 279.04 mW m?2 compared to 120.33 Mw m?2 for the MFC operated with nonrecombinant E.coli. The impedance results also suggest the effectiveness of the recombinant strain by lowering the internal resistance by more than half order as compared to the nonrecombinant one. These results affirm that the engineered strain can be used as a superior biocatalyst in contrast to the native strain and by using the technique of genetic alteration; gene of interest can be inserted based on the substrate to be treated. So, this work gives a useful insight for accomplishing successful MFC operation with the use of bacterial stains engineered at the molecular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号